Math 2050, note

Theorem 0.1 (Bolzano-Weierstrass Theorem). Suppose $\left\{x_{n}\right\}$ is a bounded sequence, then there is a convergent subsequence.

We will give an alternative proof which is different from that in textbook.

Proof. By boundedness, there is a, b such that for all n,

$$
a \leq x_{n} \leq b
$$

For $k=0$, we denote $I_{0}=[a, b], a_{0}=a$ and $b_{0}=b$. Suppose $\left[a, \frac{a_{0}+b_{0}}{2}\right]$ contains infinity many x_{k}, then we choose $a_{1}=a_{0}, b_{1}=$ $\frac{a_{0}+b_{0}}{2}$ otherwise we choose $a_{1}=\frac{a_{0}+b_{0}}{2}$ and $b_{1}=b_{0}$. Then we define $I_{1}=\left[a_{1}, b_{1}\right]$ and pick $x_{n_{1}} \in I_{1}$. This is possible since I_{1} contains infinity many elements.

We repeat the same step to obtain a sequence of I_{k} so that I_{k} is a sequence of closed, bounded and nested sequence. Moreover, there is $x_{n_{k}} \in I_{k}$ and

$$
\left|I_{k}\right|=\frac{b-a}{2^{k}}
$$

By nested interval theorem, we have $\eta \in \cap_{k=1}^{\infty} I_{k}$. Therefore,

$$
\left|\eta-x_{n_{k}}\right| \leq\left|I_{k}\right|=\frac{b-a}{2^{k}}
$$

which implies $x_{n_{k}} \rightarrow \eta$ as $k \rightarrow+\infty$.
Proposition 0.1. Suppose $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a sequence of real number which is divergent and bounded, then there exists $\left\{x_{n_{m}}\right\}_{m=1}^{\infty}$ and $\left\{x_{k_{m}}\right\}_{m=1}^{\infty}$ which is convergent so that $\lim _{m \rightarrow+\infty} x_{n_{m}}=\bar{x} \neq \tilde{x}=\lim _{m \rightarrow+\infty} x_{k_{m}}$.

Proof. Since the sequence is not convergent, the following is true in general (regardless of bounded or not):

For any $x \in \mathbb{R}$, there exists $\varepsilon_{x}>0$ such that for all $n \in \mathbb{N}$, there is $m>n$ satisfying

$$
\left|x_{m}-x\right| \geq \varepsilon_{x}>0
$$

Now, we can apply the trick we learn in the last lecture to construct a sub-sequence $\left\{x_{n_{m}}\right\}_{m=1}^{\infty}$ so that for all $m \in \mathbb{N}$,

$$
\left|x_{n_{m}}-x\right| \geq \varepsilon_{x}>0
$$

Since we know in addition the sequence is bounded, so does all its sub-sequence. (Keeping in mind the very basic example $x_{n}=(-1)^{n}$!)

Take x to be 1 (randomly), then we can find a sub-sequence $\left\{x_{n_{m}}\right\}_{m=1}^{\infty}$ so that for all $m \in \mathbb{N}$,

$$
\left|x_{n_{m}}-1\right| \geq \varepsilon_{1}>0
$$

As $\left\{x_{n_{m}}\right\}_{m=1}^{\infty}$ is bounded, it follows from Bolzano-Weierstrass Theorem that there exists a convergent sub-sequence $\left\{x_{n_{m_{j}}}\right\}_{j=1}^{\infty}$ of $\left\{x_{n_{m}}\right\}_{m=1}^{\infty}$ so that $\lim _{j \rightarrow+\infty} x_{n_{m_{j}}}=\bar{x}$ for some $\bar{x} \in \mathbb{R}$. Since the sequence is convergent, we might pass the above (non-strict) inequality to limit and hence $\bar{x} \neq 1$.
(keeping in mind, we have to extract sub-sequence again. Consider the example: $x_{n}=0$ if $n=3 k, x_{n}=1$ if $n=3 k+1, x_{n}=2$ if $n=3 k+2$, then it is bounded divergent sequence. And if we fix $x=1$, then we might obtain subsequence in form of mixture of $3 k, 3 k^{\prime}+2$ which is still divergent)

So now $\bar{x} \in \mathbb{R}$ and we know that x_{n} does not converge to \bar{x}. Hence, we can find a sub-sequence $\left\{x_{k_{m}}\right\}_{m=1}^{\infty}$ of $\left\{x_{n}\right\}_{n=1}^{\infty}$ such that for all $m \in \mathbb{N}$,

$$
\left|x_{k_{m}}-\bar{x}\right| \geq \varepsilon_{\bar{x}}>0 .
$$

Again, as $\left\{x_{k_{m}}\right\}_{m=1}^{\infty}$ is bounded, it follows from Bolzano-Weierstrass Theorem that there exists a convergent sub-sequence $\left\{x_{k_{m_{j}}}\right\}_{j=1}^{\infty}$ of $\left\{x_{k_{m}}\right\}_{m=1}^{\infty}$ so that $\lim _{j \rightarrow+\infty} x_{n_{k_{j}}}=\tilde{x}$ for some $\tilde{x} \in \mathbb{R}$. We can again pass the inequality to limit to conclude $\tilde{x} \neq \bar{x}$. Since both $\left\{x_{n_{m}}\right\}_{m=1}^{\infty}$ and $\left\{x_{k_{m}}\right\}_{m=1}^{\infty}$ are sub-sequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$, we are done.

